

Mark Scheme (Results)

Summer 2015

Pearson Edexcel Advanced Extension Award in Mathematics (9801/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code UA042091 All the material in this publication is copyright © Pearson Education Ltd 2015

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 100
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

AEA June 2015 Mark scheme

Question	Scheme	Marks	Notes
1. (a)	Both branches	B1	Shape (Inc. cusp)
	y > 0 & cusp on –ve x-axis	B1	Position
	$x = -\frac{5}{2}$ All 3 required	B1 (3)	Asymptote and int' with axes
(b)	$2x + 5 = 9 \qquad \text{so} \underline{x = 2}$	B1	
	$\frac{1}{2x+5} = 9$ or $2x+5 = \frac{1}{9}$	M1	Correct equation with no ln
	so $x = \frac{-22}{9}$ (o.e.)	A1 (3)	
		[6]	
2. (a)	-2+3-1=0 so $(x + 1)$ is a factor	B1cso	
(b)		(1)	Attempt to square.
(0)	$x + 2x + 5 = \underline{x} + \underline{2x\sqrt{2x+3}} + \underline{2x+3}$	M1	3 terms on RHS
	$1 = x\sqrt{2x+3}$	M1	Prepare for final sq
	$0 = 2x^3 + 3x^2 - 1$ (Accept $2x^3 + 3x^2 = 1$ o.e.)	Alcso	Discottorent At
	$0 = (x+1)(2x^2 + x - 1)$	M1	least 2 correct
	0 = (x+1)(2x-1)(x+1)	A 1	terms of quadratic
	$x = -1$ or $\frac{1}{2}$	AI	both roots
	Check -1 : LHS = 2 RHS = 0 so -1 is not a solution	B1	Must reject -1
	Check $\frac{1}{2}$: LHS = $\sqrt{\frac{25}{4}} = \frac{5}{2}$ RHS = $\frac{1}{2} + \sqrt{4} = 2.5$	M1	Attempts 0.5 in original or line 2
	(Only) solution is 0.5	A1 (8)	Only award if check is in <u>original</u>
	[S- for treating $\sqrt{4}$ as ± 2 etc]	[0]	
3	$\cos 2r$ $\sin 78$	[9]	Cot and tan to sin
5.	$LHS = \frac{\cos 2x}{\sin 2x} - \frac{\sin 76}{\cos 78}$	M1	and cos
	$\cos(2x+78) = \frac{1}{2}(\sin 2x \cos 78 \sec x \sec 78)$	M1	Use of $\cos(A + B)$
	$\left[\cos(2x+78) = \right] \frac{1}{2} 2\sin x \cos x \cos 78 \sec 78 \sec x$	M1	Use of sin2x and some cancelling
	$\cos(2x+78) = \sin x$ or $\cos(2x+78) = \cos(90-x)$	A1	some cancering
	2x + 78 = 90 - x	M1	Non-trig eqn in x Allow 90 + x
	$\underline{x=4}$	A1	_
	2x + 78 = 270 + x $x = 192$		Award A1 for each of these 3 solutions
	$2x + 78 = 450 - x \qquad x = 124$	A3/2/1	found. Extras
	2x + 78 = 810 - x $x = 244$		inside the range -1 i.e allow upto 4
		[9]	answers. If more than 4 then deduct
			1 for each in range

Question	Scheme	Marks	Notes
4. (a)	$(4+y)^{\frac{1}{2}} = 2(1+\frac{y}{4})^{\frac{1}{2}}$	M1	Correct prep or dealing with 4
	$= \left[2\right] \left(1 + \frac{y}{8} + \frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2!} \left(\frac{y}{4}\right)^2 + \frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!} \left(\frac{y}{4}\right)^3 \dots\right)$	M1	Clear use of bin for 3 rd or 4 th terms. Condone missing 2
	$= \frac{2 + \frac{y}{4} - \frac{y^2}{64} + \frac{y^3}{512}}{2}$	A1	Allow o.e. for coefficients
ALT	$ (4+y)^{\frac{1}{2}} = 4^{\frac{1}{2}} + \frac{1}{2}4^{-\frac{1}{2}}y + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}4^{-\frac{3}{2}}y^{2} + \frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})}{3!}4^{-\frac{5}{2}}y^{3} $	(3)	1 st M1 for the powers of 4
(b)	Let $y = 5x + x^2$ so $2 + \frac{5x}{4} + \frac{x^2}{4} - \frac{(25x^2 + 10x^3 + [x^4])}{64} + \frac{(125x^3)}{512}$	M1	Some attempt to sub. for <i>y</i> Ignore higher order terms.
		M1	Clearly attempt x^2
	$=2+\frac{5x}{4}-\frac{9x^2}{64}+\frac{45x^3}{512}\qquad (*)$	A1cso	
		(3)	E 1st M1
ALT	$\left(4+5x+x^{2}\right)^{\frac{1}{2}} = \left(4+x\right)^{\frac{1}{2}} \left(1+x\right)^{\frac{1}{2}} = (a) \times \left(1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}\right)$		FOT 1 st M1
(c)	$ 5x + x^2 < 4$ so $5x + x^2 = 4$	M1	Attempt factors or a correct equ
	$\left(x^{2}+5x+4\right)^{\frac{1}{2}} = \left(4+x\right)^{\frac{1}{2}}\left(1+x\right)^{\frac{1}{2}} \qquad \qquad x = \frac{-5\pm\sqrt{41}}{2}$	A1	Correct fact. Or cvs
	$-4 < x < 4 \text{ and } -1 < x < 1 \qquad 5x + x^2 = -4 \implies (x+4)(x+1)$ x = -1 or -4	M1 A1	Solves 2 nd eqn or 1 correct interval A1 All correct
	So $-1 < x < 1$ So $-1 < x < \frac{\sqrt{41}-5}{2}$ or	M1	M1 for a suitable combined region
	So series is convergent for $-\frac{1}{2} \leq x \leq \frac{1}{2}$	A1 (6)	A1 cso
(d)	$\int \dots = \left[2x + \frac{5x^2}{8} - \frac{9x^3}{3 \times 64} + \frac{45x^4}{4 \times 512} \right]_{-\frac{1}{2}}^{\frac{1}{2}}$	M1	Some correct integration. Ignore limits
	$= 2 \left[1 - \frac{3 \times 1}{8 \times 64} \right]$	M1	Attempt both limits S+ for props of odd and even functions
	$=\frac{509}{256}$ (o.e)	A1 (3)	
		[15]	
			1

Question	Scheme	Marks	Notes
5. (a)	$f(x) = \frac{1}{3}x + \frac{16}{3}x^{-1} \implies f'(x) = \frac{1}{3} - \frac{16}{3}x^{-2}$ or quotient rule	M1	Some correct diff
	$y' = 0 \Longrightarrow x^2 = 16$	M1	$y'=0 \rightarrow x^2 = \dots$
	$a = -4$ and $b = -\frac{8}{3}$ (o.e.)	A1A1	$(-4, \frac{-8}{3})$ is OK
		(4)	
(b)	$g(x) \leqslant -\frac{8}{3}$ (Accept $y \leqslant -\frac{8}{3}$ or $(-\infty, -\frac{8}{3}]$ o.e.)	B1ft	ft their value of b
		(1)	
(c)	-4 $-8_{(2)}$ Values are not	B1	Cor' posit' of $g(x)$ [not crossing axes]
	required. Graphs		
	-8 should not go	B1	Cor' posit' of $g^{-1}(x)$
	Penalise once only		[not crossing axes]
	1 -4 $g(sc)$	D1	Intersection at
	S+ for values	DI	And labels
		(3)	
5 (d)	$y = g(r)$ gives $r^2 = 3ry + 16 = 0$	M1	3TQ in x (needn't = 0)
	$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2n} \sum_{n=1}^{\infty} \frac{1}{2n}$	M1	Attempt formula or
	$x = \frac{3y \pm \sqrt{9y} - 64}{2}$	1011	complete square.
	2	A1	A1 for \pm or $+$ or $-$
	$3x + \sqrt{9x^2 - 64}$	A 1	Must have chosen +
	Consideration of + and - and take + $g^{-1}(x) = \frac{1}{2}$	AI	S+ for good reason
	Domain $[x] \leq -\frac{8}{3}$ (o.e.) $[Not \ g^{-1}(x) \leq -\frac{8}{3}]$	B1ft	ft their (b) or b
		(5)	
(e)	Simpler to do $g(x) = x$ leading to $x^2 + 16 = 3x^2$		Write down a correct eqn (ft their g^{-1}) and
		MI	attempt to simplify to
	$r^2 - 8$		quad or quartic Solving 2T quad or 3T
		MI	quartic
	$x = -2\sqrt{2} \text{or} -\sqrt{8}$	A1 (3)	S+ for reason for -
		[[16]	

Question	Scheme	Marks	Notes
6 (a)	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$		Attempt correct scalar
	$\begin{vmatrix} -5 \\ \bullet \end{vmatrix} = 2 - 10 + 8 = 0$ so the lines are perpendicular	M1	product
	$\begin{pmatrix} 2 \\ 4 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ 2 for the observed solution interval of perpendicular	A1 (2)	Correct calc and conclusion
(b)	$10 - 5\lambda = 2 + 2\mu$ and $-3 + 4\lambda = 3 + 2\mu$ (or $1 + 2\lambda = -1 + \mu$)	M1	Form suitable eqns
	$\lambda = \frac{14}{2}, \mu = \frac{1}{2}$	A1	
	In 3 rd equation: LHS $1 + \frac{28}{9} = \frac{37}{9}$ and RHS $= -1 + \frac{1}{9} = -\frac{8}{9}$ so skew	M1 (3)	Check and comment
Solve i,j	Should get: $\lambda = \frac{4}{\alpha}$ and $\mu = \frac{26}{\alpha}$ Check: LHS = $-\frac{11}{\alpha}$ RHS = $\frac{79}{\alpha}$		
Solve i.k	Get no solution e.g. $-5 = 5$		
		2.61	E
(c)	\rightarrow $\begin{pmatrix} 2+2\lambda \end{pmatrix}$ \rightarrow $\begin{pmatrix} 2 \end{pmatrix}$	MI	Forming vector AR
	Let <i>R</i> be a point on L_1 then $AR = \begin{vmatrix} 8-5\lambda \\ 6+42 \end{vmatrix}$ and <i>AR</i> is \perp to $\begin{vmatrix} -5 \\ 4 \end{vmatrix}$	M1	Attempt suitable scalar product. Must see
	$\left(-0+4\lambda\right)$ (4)	N#1 A 1	some products
	$4 + 4\lambda - 40 + 25\lambda - 24 + 16\lambda = 0$ so $\lambda = \frac{4}{3}$		Solve for λ
	$OX = \frac{11}{3}\mathbf{i} + \frac{10}{3}\mathbf{j} + \frac{7}{3}\mathbf{k}$	A1 (5)	Allow coord form
(d)	$\left(\begin{array}{c} \frac{14}{2} \end{array}\right)$	M1,	Attempt vector AX
	$\overrightarrow{AX} = \begin{vmatrix} 3 \\ 4 \\ 2 \end{vmatrix}$, so $ \overrightarrow{AX} = \frac{2}{2}\sqrt{7^2 + 2^2 + 1^2} = 2\sqrt{6}$ (Allow $\sqrt{24}$ or $\sqrt{\frac{216}{2}}$)		
	$\begin{pmatrix} 3 \\ -\frac{2}{2} \end{pmatrix}$	AI (2)	
(e)	Let <i>M</i> be midpoint of $AB \overline{AM} = \overline{AX} \bullet (unit vector in direction of I)$	M1	Suitable strategy
	$\frac{1}{1} = \frac{1}{1} \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left[\frac{1}{2} + \frac{1}{2} +$	M1	Correct calcs
	$ AM = \frac{1}{3} \left(\frac{14}{3} \times 1 + \frac{4}{3} \times 2 - \frac{2}{3} \times 2 \right) [= 2]$		
	So $\overline{ AB } = 4$ or $\overline{ AM } = 2$	Al	o.e.
	$\overrightarrow{OB} = \overrightarrow{OA} + 4 \times ($ unit vector in direction of $L_2)$	M1	Strategy
	$\begin{bmatrix} & (-1) & (1) \end{bmatrix} \begin{pmatrix} \frac{1}{3} \end{bmatrix}$		
	$\left \overrightarrow{OB} \right = \left 2 \right + \frac{4}{2} \left 2 \right = \left \frac{14}{3} \right $	A1	
	$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} \frac{17}{3} \end{pmatrix}$	(5)	
(f)			Attempt a correct
(-)	$\begin{pmatrix} -\frac{14}{2} \end{pmatrix} \begin{pmatrix} -\frac{10}{2} \end{pmatrix}$		scalar product o.e. and
	$\vec{XA} \bullet \vec{XB} = \begin{vmatrix} 3 \\ -\frac{4}{4} \end{vmatrix} \bullet \begin{vmatrix} 3 \\ \frac{4}{2} \end{vmatrix} = \frac{1}{4}(140 - 16 + 20) = \frac{144}{4} = 2\sqrt{6} \cdot 2\sqrt{6} \cos\theta$	M1	set = to $ AX BX \cos\theta$
	$\begin{pmatrix} 3\\ \frac{2}{3} \end{pmatrix} \begin{pmatrix} 3\\ \frac{10}{3} \end{pmatrix} = 9$		
	$\cos\theta = \frac{2}{3}$	Alcao	
	6	(2)	
		[[19]	

Question	Scheme	Marks	Notes
7 (a)	$x = \sec \theta \implies \frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec \theta \tan \theta$	M1	
	$I = \int \frac{\sec\theta \tan\theta}{\tan^3\theta} \mathrm{d}\theta \text{or} \int \sec\theta \cot^2\theta \mathrm{d}\theta, = \int \csc\theta \cot\theta \mathrm{d}\theta$	A1, M1	Correct θ integral Prep to integrate
	$= \left[-\csc \theta \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} , = -\left(\frac{2}{\sqrt{3}} - \sqrt{2}\right) = \frac{\sqrt{6} - 2}{\sqrt{3}} (*)$	A1, A1cso	For $-\cos \theta$ o.e. Changing limits and cso
(b)	$J = \left[-\operatorname{cosec}\theta \cot\theta\right] - \int \operatorname{cosec}^{3}\theta \mathrm{d}\theta$	(5) M1	Suitable 1 st step Condone sign slips
	$J = \left[-\operatorname{cosec}\theta \cot\theta\right] - \left[\operatorname{cosec}\theta [1 + \cot^2\theta] \mathrm{d}\theta\right]$	M1	Use of $1 + \cot^2$
	$J = \left[-\operatorname{cosec}\theta \cot\theta\right] - \int \operatorname{cosec}\theta \mathrm{d}\theta - J [\operatorname{Allow}\int \operatorname{cosec}\theta \cot^2\theta \mathrm{d}\theta]$	A1	Correctly dealing with 2 nd int
	Use of $\int \csc\theta \mathrm{d}\theta = -\ln\left \csc\theta + \cot\theta\right $	B1	Int of $\csc \theta$ Must come from their working
	$2J = \dots$ so, $J = \frac{1}{2} \left[\ln \left \operatorname{cosec} \theta + \cot \theta \right - \operatorname{cosec} \theta \cot \theta \right]$ (*)	M1A1	Identify J and cso
	2	(6)	
(c)	$V = \pi \int_{\sqrt{2}}^{2} \frac{1}{(x^2 - 1)^3} \mathrm{d}x [= \pi K]$	B1	Correct integral + limits (Ignore π)
	$x = \sec \theta \Longrightarrow K = \int \sec \theta \cot^5 \theta \mathrm{d}\theta (\text{o.e.})$	M1	Changes to int in θ
	$K = \int \operatorname{cosec} \theta \operatorname{cot}^4 \theta \mathrm{d}\theta = \left[-\operatorname{cosec} \theta \operatorname{cot}^3 \theta \right] - \int 3 \operatorname{cot}^2 \theta \operatorname{cosec}^3 \theta \mathrm{d}\theta$	M1	Attempt int by parts
	$\int 3\cot^2\theta \csc^3\theta d\theta = \int 3\cot^2\theta \csc\theta d\theta + \int 3\cot^4\theta \csc\theta d\theta$	M1	Split 2 nd int Award after 2 nd M1
	$K = \left[-\csc\theta \cot^3\theta \right] - 3J - 3K$	M1	$K = f(\theta) \pm J - nK$
	$\left[-\csc\theta\cot^{3}\theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = -\left[\left(\frac{2}{\sqrt{3}}\times\frac{1}{3\sqrt{3}}\right) - \left(\sqrt{2}\right)\right] = \sqrt{2} - \frac{2}{9}$	A1	Only award A marks once <u>all</u> the integration is completed
	$\left[J\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{1}{2} \left[\ln\left(\frac{\sqrt{3}}{\sqrt{2}+1}\right) - \frac{2}{3} + \sqrt{2}\right]$	A1	
	$K = \frac{1}{4} \left[\sqrt{2} - \frac{2}{9} - \frac{3}{2} \left\{ \ln\left(\frac{\sqrt{3}}{\sqrt{2} + 1}\right) - \frac{2}{3} + \sqrt{2} \right\} \right] \text{ so } V = \pi \left[\frac{3}{8} \ln\left(\frac{\sqrt{2} + 1}{\sqrt{3}}\right) + \frac{7}{36} - \frac{\sqrt{2}}{8} \right]$	A1cso (8)	Including π
		[19]	

Questions	Mark	Awarding of S and T marks
2, 3	S 1	For a fully correct solution that is succinct or includes an S+ point
4-7	S2	For a fully correct solution that is succinct or includes an S+ point
4-7	S 1	For a fully correct solution that is succinct but has an $S - point$
4-7	S 1	For a fully correct solution that is slightly laboured but includes an S+ point
4-7	S 1	For a score of n -1 but solution is otherwise succinct or contains an S+ point
		Maximum of 6 S marks
ALL	T1	For at least half marks on every question

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom